Коммерческий отдел (846) 277-82-61 Отдел пусконаладки и ремонта (846) 277-81-33 Почта info@azstraststroy.ru
Отдел проектирования (846) 276-35-03 Отдел строительства (846) 276-35-30
ООО «АЗСТРАСТСТРОЙ»
Тел./факс: (846) 277-82-60, 61 E-mail: info@azstraststroy.ru

Каталог

Резервуары

Резервуары вертикальные

Элементы конструкции вертикальных стальных резервуаров

Элементы конструкции вертикальных стальных резервуаров

Днище резервуара вертикального стального

Для производства днищ резервуаров типа РВС применяется сталь толщиной не менее 4 мм. В резервуарах малого объема (до 1 000 м³ включительно) днище, как правило, выполняется плоской формы. Для РВС объемом от 1 000 м³ днище изготавливается с уклоном от центра или в центр. Уклон делается в отношении 1 к 100. На днище резервуаров РВС объемом больше 1000 м³ устанавливается кольцевая окрайка. Толщина стали для окрайки — от 6 мм и больше в зависимости от толщины нижнего пояса РВС. Зависимость показана в таблице:

Толщина нижнего пояса резервуара, мм Минимальная толщина кольцевой окрайки, мм
до 7 (включительно) 6
8-11 (включительно) 7
12-16 (включительно) 9
17-20 (включительно) 12
20-26 (включительно) 14
26 и выше 16

Днище резервуара также часто оборудуется зумпфами зачистки. Они предназначены для отвода подтоварной воды, различных отложений и загрязнений и устанавливаются в специально подготовленном приямке. Если уклон днища к центру, зумпф зачистки располагается в центре днища; если уклон от центра (или при плоской конструкции днища) — зумпф располагается рядом со стенкой на расстоянии 600 мм и выше. Существует два типа зумпфов: круглый зумпф зачистки и лотковый зумпф зачистки.

Стенка резервуара вертикального стального.

Стенка резервуара представляет собой стальное полотнище, сваренное из листового металлопроката в несколько поясов. Методом рулонирования стенка готовится на заводе в форме прямоугольно полотнища, сваренного из листового металлопроката 1,5×6 м. Вертикальные стыки листов имеют разбежку, а продольные швы готовятся с разделкой для зубчатого монтажного шва. На полотнище оставляется технологический припуск до 300 мм, из которого и вырезается зубчатый монтажный стык. Для стенок полистовой сборки применяются прокат шириной от 1,8 м до 3 м и длиной до 12 метров. Обработка кромок листов осуществляется механическим способом (фрезерованием) или плазменной резкой на машинах с программным управлением. Вальцовка листов производится на 3- или 4-валковых листогибочных машинах.

Толщины стенки

Толщины поясов стенки определяются на этапе проектирования резервуара для обеспечения прочности всей конструкции. Расчетные толщины поясов стенки могут включать припуск (запас) на коррозию. ГОСТом 52910–2008 предусмотрены минимальные конструктивные толщины листов стенки резервуаров типа РВС в зависимости от диаметра резервуара:

Диаметр резервуара, м Толщина листов стенки, минимум, мм
до 16 (включительно) 5
16-25 (включительно) 6
25-40 (включительно) 8
40-65 (включительно) 10
65 и выше 12

Расположение в стенке резервуара люков и патрубков

Для расположения в стенке резервуара люков и патрубков предусматриваются специальные отверстия, которые оснащаются усиливающей накладкой по окружности устанавливаемого изделия (при установке изделий с условным проходом больше 70 мм). Во всех резервуарах типа РВС предусмотрено расположение люка-лаза в первом поясе стенки. Резервуары с плавающей крышей РВСПк и резервуар с понтоном РВСП оснащаются дополнительным люком-лазом для выхода на понтон или крышу.

Анкерные крепления стенки

При усилии от расчетной сейсмической или ветровой нагрузки, превышающем восстанавливающий момент, предусматривается анкерные крепления стенки. Их располагают по окружности стенки на расстоянии до 3 м друг от друга.

Ребра жесткости.

В верху стенки резервуара располагается основное кольцевое ребро жесткости. У резервуаров РВСПк с плавающей крышей ребра жесткости устанавливаются на внешней стороне стенки ниже верхнего края на 1,1 м — 1,25 м. Кольцевое ребро жесткости помимо функции усиления конструкции резервуара выполняет роль площадки обслуживания.

Крыша резервуара вертикального стального.

В зависимости от типоразмера резервуара и прочих специфических особенностей в резервуарах применяют стационарные крыши, которые делятся на бескаркасные (самонесущие) и каркасные крыши конической и сферической форм, а также плавающие крыши. Крыша опирается на стенку резервуара с кольцевым ребром жесткости. Толщина настила крыши и сечение элементов каркасных профилей проектируются от 5 мм.

Коническая оболочка (коническая бескаркасная крыша)

Применяется на резервуарах вертикальных стальных небольшого объема (100 м³ — 1000 м³). Представляет собой стационарную крышу в форме конуса. Угол конусности (15° — 30°) обеспечивает несущую способность крыши. Для увеличения несущей способности крышу с наружной стороны оборудуют шпангоутами (ребрами жесткости кольцевой формы). Настил такой крыши изготавливается на заводе методом рулонирования или полистовым способом. В первом случае используется металлопрокат толщиной до 7 мм, во втором — до 10 мм. Как правило, коническую бескаркасную крышу доставляют на монтажную площадку в виде пластины круглой формы секторным вырезом. Данный вырез и обеспечивает коническую форму крыши, когда его кромки стягиваются в процессе монтажа.

Сферическая оболочка (бескаркасная сферическая крыша).

Применяется на резервуарах вертикальных стальных среднего объема (1000 м³ — 5000 м³). Представляет собой стационарную крышу в форме сферы, которая обеспечивает ее несущую способность. Несущие элементы каркаса отсутствуют. Радиус сферы проектируется в пределах 0,8 — 1,2 диаметров самого резервуара. Настил сферической оболочки выполняется в заводских условиях в виде вальцованных элементов двоякой кривизны (в мередиальном и кольцевом направлении) из металлопроката толщиной до 10 мм. На монтажной площадке вальцованные элементы свариваются друг с другом двусторонними швами.

Каркасная коническая крыша.

Применяется на резервуарах вертикальных стальных среднего объема (1000 м³ — 5000 м³). Представляет собой стационарную крышу в форме конуса Угол наклона: 4,76 — 9,46. Состоят из: (1) центрального щита; (2) секторных каркасов; (3) кольцевых элементов каркаса; (4) полотнищ настила.

Все вышеперечисленные элементы изготавливаются в заводских условиях. Полотнища настила могут быть изготовлены, в частности методом рулонирования. В данном случае при монтаже они разворачиваются на земле рядом с днищем и затем крепятся на уже соединенные каркасы. Полотнища настила могут быть изготовлены и полистовым способом. Также часто используется практика изготовления в заводских условиях щитов крыши, состоящих из соединенных между собой элементов каркаса и настила. В данном случае щиты крыши поставляются на монтажную площадку в специальной упаковке.
Коническая каркасная крыша может изготавливаться во взрывозащищенном исполнении (легко сбрасываемая крыша). В таком случае к каркасу настил крыши не приваривается, а крепится только к верхнему кольцевому элементу стенки. Этим достигается то, что при аварийном превышении давления внутри резервуара настил отрывается от стенки. При этом сам резервуар не разрушается и сохраняется целостность крепления стенки к днищу.

Сферическая каркасная (купольная крыша)

Применяется на резервуарах вертикальных стальных большого объема (от 5000 м³, но не более 50 м в диаметре). Представляют собой стационарную крышу в форме сферы с радиально-кольцевой каркасной системой. Радиус сферы проектируется в пределах 0,8 — 1,5 диаметров самого резервуара. Сферическая каркасная крыша состоит из: (1) центрального щита; (2) вальцованных радиальных балок; (3) кольцевых элементов каркаса; (4) кольца жесткости по периметру стенки; (5) листов настила.

Все вышеуказанные элементы изготавливаются в заводских условиях. На монтажную площадку доставляются в виде готовых щитов и раздельных элементов каркаса и настила. Настил представляет собой подготовленные листы металла для полистовой сборки, либо подготовленные на заводе крупногабаритные карты.

Также сферические крыши изготавливаются во взрывозащищенном исполнении. В данном случае настил крепят только к окаймляющему элементу по окружности крыши. Этим достигается то, что при аварийном превышении давления внутри резервуара настил отрывается от стенки. При этом сам резервуар не разрушается и сохраняется целостность крепления стенки к днищу.

Плавающие крыши.

Применяются в резервуарах, не оборудованных стационарной крышей. Данный тип крыши можно использовать в районах с нормативной снеговой нагрузкой до 1,5 кПа.

В практике резервуаростроения применяется 2 основных типа плавающих крыш: (1) однодечная плавающая крыша и (2) двудечная плавающая крыша.

Однодечными плавающими крышами комплектуются резервуары средних размеров (диаметром до 50 м), устанавливаемые на производственных площадках с нормативной скоростью ветра в пределах 100 км/ч.

Однодечные плавающие крыши изготавливаются в заводских условиях и состоят из:
листовой мембраны, выполненной методом рулонирования или полистовым способом;
кольцевых коробов, расположенных по периметру.

Двудечные плавающие крыши разработаны для резервуаров большего диаметра (более 50 м) и для районов с большей ветровой нагрузкой. Ее конструкция позволяет снизить динамические нагрузки на мембрану. Существует два варианта строительства плавающей крыши такой конструкции: (1) крыша комплектуется радиальными отсеками и кольцевыми отсеками центральной части, формируемыми в процессе монтажа; (2) радиальные короба производятся в заводских условиях в целях сокращения объема монтажных работ.

При монтаже плавающей крыши обеспечивается уклон мембраны к центру путем пригруза. Это позволяет отводить ливневые воды с поверхности пруши. В центре монтируется гибкий или шарнирный водоспуск, снабженный заборным устройством и обратным клапаном. Эта конструкция позволяет отводить воду и, одновременно, препятствует выступанию хранимого в резервуаре продукта на поверхность крыши.
Для герметизации зазоров, возникающих между краем плавающей крыши и стенкой резервуара и между патрубками в крыше и направляющими, используются уплотнительные затворы. Материал, из которого они изготавливаются, подбирается из учета химического состава и температуры хранимого в резервуаре продукта, требованиям к сроку службы, газоплотности и других специфических факторов.

Лестницы, площадки и переходы для резервуаров вертикальных стальных

Лестницы

Для подъема на вертикальные стальные резервуары применяют 3 типа лестниц: стремянки для резервуаров малого объема (до 500 м³), шахтные лестницы и кольцевые лестницы.

Шахтная лестница устанавливается на отдельный фундамент. При изготовлении резервуара методом рулованирования шахтная лестница служит технологическим каркасом (катушкой) — на нее наматываются сваренные полотнища стенки, днища и настила кровли. Это обеспечивает экономию при заказе резервуара, поскольку исключается необходимость производить технологический каркас, являющийся невозвратной упаковкой.
Кольцевая лестница закрепляется только на стенке резервуара, ее нижний марш отстает от земли на 250 мм. Такая конструкция лестницы более удобна для обслуживания оборудования, расположенного на резервуаре.
Лестницы резервуаров вертикальных стальных устраиваются минимальной шириной 700 мм. Устанавливается лестница под углом к горизонтальной поверхности не более 50° так, чтобы выдерживался сосредоточенный груз 4,5 кН. Если высота лестницы превышает 9 метров, в ее проекте предусматриваются промежуточные площадки на расстоянии не более 6 метров друг от друга.

Ступени изготавливаются из перфорированного, решетчатого или рифленого металла минимальной шириной 200 мм, высотой не более 250 мм и с уклоном от 2° до 5° к задней грани. Поручни лестницы изготавливаются таким образом, чтобы выдерживалась горизонтальную нагрузку 0,9 кН в верхней точке и монтируются на высоте 1 м.

Площадки, переходы и ограждения

На резервуарах со стационарной крышей по всему ее периметру устанавливается ограждение. Также ограждения монтируются наружной стороне расположенных на крыше площадок обслуживания. Ограждение проектируется так, чтобы в любой точке выдерживалась нагрузка в любом направлении 0,9 кН.

Также на резервуарах применяются переходы и площадки обслуживания. Они комплектуются перилами на высоте 1,25 м. Площадки и переходы выдерживают сосредоточенный груз 4,5 кН (на площадке 100 мм х 100 мм);